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1 Introduction

The theory of interacting massless and massive higher spin (HS) fields (see [2]–[3] for

reviews) is attracting growing interest. Until now the consistent interaction vertices for the

massless and massive higher spin fields, both on flat and constant curvature backgrounds,

have been obtained in frame - like [4] and in metric-like [5]–[20] formulations. However,

the studies in this directions are far from being complete. The most challenging problems

are to build the complete systematics of the interacting higher spin fields and understand

the possible role and connection of these kind of theories with string and M- Theory. One

particular problem involves further study of the cubic interactions which have already

been constructed in various approaches in order to obtain effective actions which contain

interaction terms of an order higher than cubic (see e.g. [21]).

In the present paper we shall follow the covariant BRST formulation of the interacting

higher spin fields [12] (see also [8] for the earlier work in this direction). As a first step

in this set-up one constructs a BRST charge and the BRST-invariant free Lagrangian

(see [22]–[26] for other gauge-invariant descriptions for massive and massless higher spin

fields) which describes the propagation of symmetric higher spin modes either on flat or

AdS space. As a result of the gauge-invariant formulation, the free Lagrangian contains a

number of auxiliary fields. The total system of fields is called a “triplet” for the case of
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reducible massless symmetric representations of Poincare or Anti de Sitter group [27]–[30],

or “generalized triplet” for the case of reducible representations of the Poincare group with

mixed symmetry [31]. The second step is to make a consistent nonlinear deformation of

the quadratic Lagrangian and of the abelian gauge transformations by building the BRST-

invariant cubic vertex. The extension of this method to the case of massive higher spin

fields is straightforward, the only difference being that one has to use the BRST charge

for massive reducible representations of the Poincare group [32]–[33]. An advantage of this

approach is that in contrast to the BRST charge describing the propagation of irreducible

higher spin modes [35]–[36], the BRST charge for triplets and generalized triplets has a

much simpler form. This in turn simplifies the problem of finding the BRST-invariant

cubic interaction vertex for either massless or massive fields.

However, it is not clear how far one can pursue the study of interactions between

reducible representations in order to build complete systematics or at least to achieve a

better understanding of interacting higher spin theory. Therefore, a study of interactions

between the fields which belong to the irreducible representations of Poincare and AdS

groups are of extreme importance. There are several reasons for this: apart from the fact

that the original interacting higher spin theory has been constructed for irreducible modes

in the frame-like approach [4], a BRST charge describing a massive triplet or a generalized

triplet on an AdS space has not been constructed yet.1 Furthermore, a computation of four

point scattering amplitudes, or Witten diagrams in the case of an AdS space for reducible

higher spin modes can be rather complicated because of the presence of nonphysical pure

gauge degrees of freedom in corresponding Lagrangians. Obviously these degrees of freedom

should be gauged away in order to build a consistent perturbation theory. In other words,

the pure gauge degrees of freedom, which simplify the structure of the free Lagrangian and

the interaction vertexes, cause difficulties when analyzing Feynman diagrams and scattering

amplitudes and the main goal of the present paper is to address this problem.

To summarise: our strategy is to start from the Lagrangian describing interacting

reducible representations of the higher spin modes, since the construction of these kind of

gauge-invariant Lagrangians is much simpler than for irreducible ones. As a second step

in order to build the perturbation theory we extract the corresponding propagators for

irreducible higher spin modes from the Lagrangian describing massless reducible higher

spin fields. This program turns out to be technically rather complicated and we describe

it in great detail. As an application of this procedure we consider the problem of current-

current exchange for the case where reducible higher spin modes are coupled to scalar

fields. We leave the application of the technique developed in this paper for the case of

more complicated systems when one has interactions between infinite number of triplets,

for further study.

We would like to point out that our results described in section 3 for diagonaliziation

of the Lagrangian which contains reducible fields in terms of Fronsdal Lagrangians for

irreducible fields, has been checked explicitly only up to spin 4. Nevertheless we have

1One can construct, however, the Lagrangian describing an interaction between a higher spin modes and

massive scalars from the one describing the massless fields [1].
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provided an ansatz which we believe that it diagonalizes the triplet Lagrangian for arbitrary

spin-s. Based on the non-trivial nature of the diagonalization procedure for spin 4 as well

as some qualitative features, which appear in the comparison of these results with those of

section 4, we suggest that the procedure proposed for the decomposition of the Lagrangian

describing “triplets” into the Fronsdal Lagrangians for irreducible fields is correct.

2 Higher spin triplets: notation and conventions

In this section we shall briefly summarise the technique of building BRST-invariant cubic

vertexes [12]. We shall explain it on an example of massive triplets which, despite being a

very simple generalization of the vertex given in [14] has not been presented elsewhere.2

Let us start from the massless triplet in D + 1 space-time dimensions. To this end we

introduce an auxiliary Fock space spanned by oscillator and ghost variables

[αM , α+
N ] = ηMN , {c+, b} = {c, b+} = {c0, b0} = 1 , (2.1)

and the vacuum in the Hilbert space is defined as:

αM |0〉 = 0, c|0〉 = 0, b|0〉 = 0, b0|0〉 = 0. (2.2)

Obviously, one can consider an arbitrary number of these oscillators, thus describing re-

ducible representations of the Poincare group with mixed symmetry [31]. Although the

generalization to this case is straightforward we shall consider only totally symmetric rep-

resentations. The corresponding BRST charge has the form:

Q = c0 l̃0 + c+ l̃ + cl̃+ − c+cb0 (2.3)

with l̃0 = pMpM , l̃ = αMpM , pM = −i∂M .

The functional (named “triplet” [29]) which contains both physical reducible represen-

tations of the Poincare group with arbitrary integer spins and auxiliary nonphysical fields

is the most general expansion in terms of the ghost variables with the ghost number zero

|Φ〉 = |φ1〉 + c0|φ2〉 = |ϕ〉 + c+ b+ |d〉 + c0 b+ |c〉

and the component fields are given by:

|ϕ〉 =
1

s!
ϕM1...Ms(x)αM1+ . . . αMs+ |0〉

|d〉 =
1

(s − 2)!
DM1...Ms−2

(x)αM1+ . . . αMs−2+ |0〉 ,

|c〉 =
−i

(s − 1)!
CM1...Ms−1

(x)αM1+ . . . αMs−1+ |0〉 . (2.4)

Furthermore, one can perform a dimensional reduction to D dimensions thus describing

a massive theory in one dimension lower [32]–[33]. The corresponding BRST charge

Q = c0l0 + c+l + cl+ + c0m
2 + c+mαD + cmα+

D − c+cb0, l0 = pµpµ, l = αµpµ, (2.5)

2A related discussion with respect to the high energy limit of Open String Field Theory appears in [15].
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contains the constant mass parameter m and therefore all fields in the triplet have the

same value of mass.However one can make the mass parameter oscillator dependent [34]

thus considering a Regge trajectory similar to the one present in the bosonic string theory.

The construction of the interaction vertex in this case is much more involved and we

shall not consider this interesting possibility here. Having constructed the nilpotent BRST

charge one can write the BRST-invariant free Lagrangian

L =

∫

dc0〈Φ|Q|Φ〉 (2.6)

which is invariant under the gauge transformations

δ|Φ〉 = Q|Λ〉, |Λ〉 = b+|λ〉, |λ〉 =
i

(s − 1)!
λM1...Ms−1

(x)αM1+ . . . αMs−1+ |0〉 (2.7)

The free equations of motion and gauge transformation rules for the massive triplet can

be easily obtained from (2.4), (2.5), (2.6) and (2.7) after making the decomposition α+
M →

(α+
µ , α+

D)

(l0 + m2)|ϕ〉 = (l+ + mα+
D)|c〉 (2.8)

(l0 + m2)|d〉 = (l + mαD)|c〉 (2.9)

|c〉 = (l+ + mα+
D)|d〉 − (l + mαD)|ϕ〉 (2.10)

while the gauge transformation rule (2.7) gives

δ|ϕ〉 = (l+ + mα+
D)|λ〉, δ|d〉 = (l + mαD)|λ〉, δ|c〉 = (l0 + m2)|λ〉. (2.11)

In order to describe cubic interactions one introduces three copies (i = 1, 2, 3) of

the Hilbert space defined above, as in bosonic Open String Field Theory [37]. Then the

Lagrangian has the form

L =

3
∑

i=1

∫

dci
0〈Φi|Qi |Φi〉 + g

(
∫

dc1
0dc2

0dc3
0〈Φ1|〈Φ2|〈Φ3||V 〉 + h.c

)

, (2.12)

where |V 〉 is the cubic vertex and g is a coupling constant. The Lagrangian (2.12) is

invariant up to the first order in the coupling constant g with respect to the nonabelian

gauge transformations

δ|Φi〉 = Qi|Λi〉 − g

∫

dci+1
0 dci+2

0 [(〈Φi+1|〈Λi+2| + 〈Φi+2|〈Λi+1|)|V 〉] , (2.13)

provided that the vertex |V 〉 satisfies the BRST invariance condition

∑

i

Qi|V 〉 = 0 . (2.14)

Further on, in order to simplify equations in the rest of this section we introduce bilinear

combinations of the oscillators

γ+,ij = c+,ib+,j, β+,ij = c+,ibj
0 M+,ij =

1

2
α+,µ,iα+,µ,j (2.15)
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which have ghost number zero. Further we take an ansats for the vertex

|V 〉 = V 1 × V 2|−〉123, (2.16)

|−〉123 = c1
0c

2
0c

3
0|0〉1 ⊗ |0〉2 ⊗ |0〉3

with

V 1 = exp ( Yijl
+,ij + Zijβ

+,ij + Uijm
iα+,j

D ) , (2.17)

V 2 = exp ( Sijγ
+,ij + PijM

+,ij + Rijα
+,i
D α+,j

D ),

where Pij = Pji, Rij = Rji. We have also assumed that m1 = m2 = m3. However, this

requirement is not a necessity and one can still find a solution when this requirement is

relaxed. Putting this ansatz into the BRST invariance condition and using momentum

conservation p1
µ + p2

µ + p3
µ = 0 one can obtain a solution for Y rs, U rs and Zrs

Zi,i+1 + Zi,i+2 = 0 (2.18)

Yi,i+1 = Yii − Zii − 1/2(Zi,i+1 − Zi,i+2) (2.19)

Yi,i+2 = Yii − Zii + 1/2(Zi,i+1 − Zi,i+2).

Zi,i + Zi,i+1 + Zi,i+2 = Ui,i + Ui+1,i + Ui+2,i

Sij = Pij = Rij = 0 i 6= j (2.20)

Rij − Sii = 0 i = 1, 2, 3 (2.21)

Pii − Sii = 0 i = 1, 2, 3

In what follows we will assume cyclic symmetry in the three Fock spaces which implies

along with (2.18) and

Z12 = Z23 = Z31 = Za, Z21 = Z13 = Z32 = Zb = −Za (2.22)

U12 = U23 = U31 = Ua, U21 = U13 = U32 = Ub (2.23)

Y12 = Y23 = Y31 = Ya, Y21 = Y13 = Y32 = Yb

Yii = Y, Zii = Z, Pii = P, Sii = S, Rii = R,

S = P = R

Choosing the value of the parameter S to be equal to 1 one can make the above solution

exact to all orders in the coupling constant in complete analogy with [14]. It can be checked

directly that this solution belongs to nontrivial cohomologies of the BRST charge (2.5) and

thus can not be obtained via the field redefinitions from the free Lagrangian3 Let us also

3 The nontrivial cohomology means that the vertex cannot be written in the form |V 〉 = Q̃|W 〉, where |W 〉

an arbitrary functional having ghost number −2 (see [12] for details). Such interactions are generated by field

redefinitions of the form |ϕi〉 = 〈ϕi+1, ϕi+2||W 〉. Actually if we drop the requirement for cyclic symmetry the

most general field redefinition would generate an interaction of the form |δV 〉 = Q1|W1〉+Q2|W2〉+Q3|W3〉,

which corresponds to the case when we redefine the three fields separately in the free Lagrangian using three

independent functionals |Wi〉. Therefore in practice when the cyclic symmetry of the vertex is not required

in order to exclude all vertexes which can be obtained from the free Lagrangian via the field redefinitions

one needs to check that the solution of cohomologies of the BRST charge Q̃ does not have the form

Q1|W1〉 + Q2|W2〉 + Q3|W3〉.
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note that one can make the triplet matrix valued, and consider a theory with a nonabelian

gauge group in complete analogy with the string theory.

As an alternative example one can consider a different condition on the mass parame-

ters; in particular m1 +m2 +m3 = 0. This case will correspond to a dimensional reduction

of the vertex given in [14]. In this case parameters Uij will obey exactly the same conditions

as the parameters Yij .

An important point is that one can consistently put the mass parameter(s) mi equal to

zero and decouple oscillators α+
D which correspond to the compact dimension. In this way

one recovers the interacting system of massless triplets described in [14]. As for the case

of interacting massless triplets, the case of interacting massive triplets requires an infinite

number of them in order to ensure the exactness of the vertex in all orders in coupling

constant g.

The next natural step is to construct the full perturbation theory for this model of

interacting higher spins. To this end one needs to gauge fix the action in order to avoid

propagation of the pure gauge degrees of freedom and extract the propagators of individual

physical higher spin modes. This program turns out to be technically involved and as a

first step instead of building the perturbation theory for this model, we shall consider a

system of interacting triplets where their number is finite. As we mentioned above in this

case the vertex is no longer exact to all orders in the coupling constant and therefore there

is a certain freedom in the definition of the coupling constants. These coupling constants

can be presumably fixed in the full interacting theory which in principle can be different

from the solution described above, since one can not claim that this solution is unique.

Therefore in the following, let us consider the simple case of the system of one massless

triplet which describes spins s, s − 2, . . . , 1/0 interacting with two scalar fields [1]. The

general solution for a gauge invariant Lagrangian to the lowest order in g can in principle

be deduced from (2.18) if one drops the requirement for cyclic symmetry and sets mi = 0.

The exactness of the vertex to all orders in g is also no longer required, so one can consider

a finite number of interacting triplets. If we keep the masses of the two scalars nonzero

the interaction vertex remains the same as for the massless case, but the free Lagrangian is

that of massive scalar triplets. This is the equivalent model to the one considered in [19],

where the scalars play the role of matter charged under HS gauge fields. These higher spin

fields gauge the rigid symmetries of the free action for the scalars. One can also make a

deformation of this solution for an AdS space but we shall not consider this possibility here.

In components the free part of the Lagrangian of (2.12), for a spin-s triplet can be written

L = − 1

2
(∂µϕ)2 + s ∂ · ϕC + s(s − 1) ∂ · C D

+
s(s − 1)

2
(∂µD)2 − s

2
C 2 , (2.24)

where we have rescaled all fields of the triplet by a factor ϕs →
√

s! ϕs as can be easily

seen by computing the bracket 〈Φ|Q|Φ〉 using the definitions of (2.4). The free equations

– 6 –
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of motion for a triplet on a flat background are

� ϕ = ∂C ,

C = ∂ · ϕ − ∂D ,

� D = ∂ · C , (2.25)

along with the gauge transformations

δφ = ∂λ, δC = �λ, δD = ∂ · λ. (2.26)

Here, as usual, ∂· denotes the divergence and ∂ denotes the symmetrized derivative without

contraction of indexes. Using the expression of the vertex in [1], or equivalently setting

mi = 0 and dropping the cyclicity requirement in (2.16)–(2.22), we can write the cubic

interaction for two scalars and one arbitrary HS triplet

L00s
int =

[ s
2
]

∑

q=0

Ns−2q

(2q)!!(s − 2q)!
Wq

s · J1;2
s−2q + h.c. , (2.27)

where Wq
s is defined in [29]

Wq
s = ϕ[q]

s − 2q D
[q−1]
s−2 , δWq

s = ∂Λ
[q]
s−1 , (2.28)

and ϕ
[q]
s is the qth trace of the tensors ϕs of rank-s. The currents are defined as [7]

J1;2
s−2q =

s−2q
∑

r=0

(

s − 2q

r

)

(−1)r (∂µ1 . . . ∂µrφ1) (∂µr+1 . . . ∂µs−2qφ2) (2.29)

and Ns−2q is an undetermined constant which probably gets fixed once we have the fully

consistent, interacting HS theory to all orders in the coupling constant. That is, we expect

that closing the algebra of gauge transformations and gauge invariance of higher order

interactions will constrain these coefficients. Their precise values are not important for

our present discussion and we will not use them any more, but we will assume that they

are non-vanishing and therefore consistent interactions of the type in (2.27) do exist in the

fully-gauge invariant theory. Moreover the explicit form of the currents is not needed in

what follows. Since we shall consider current-current interactions for external currents with

intermediate HS states propagating, the only property we shall use for our computations is

their conservation. Nevertheless, if one considers a scattering process between dynamical

scalar fields, the explicit form of the currents is needed [19].

Our goal in the following sections is to compute the current-current interaction between

the currents (2.29) using two methods. First, by decomposing Wq
s into irreducible fields;

and second by directly using the Wq
s propagator in a particular gauge. This way we will

deduce the propagator of the triplet fields in (2.24) which to our knowledge has not been

considered elsewhere.
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3 Decomposition of higher spin triplets into irreducible higher spin fields

and current-current interactions

In order to compute scattering amplitudes using Feynman rules we will need to decom-

pose the triplets into irreducible modes and apply this decomposition to the free La-

grangian (2.24). We expect that the Lagrangian for the triplet will become a sum of

Fronsdal Lagrangians for irreducible higher spin states of spin s, s − 2, . . . , 1/0. This de-

composition is a long and difficult task which to our knowledge has not been presented

elsewhere. We will take an interacting Lagrangian to be of the form (2.27) with currents

given by linear combinations of those in (2.29). Once we have completed this task we will

compute the current exchanges using the same methods as in [13].

3.1 Decomposition of W states in terms of irreducible modes

In this subsection we will demonstrate how we can decompose the fields Wq
s in terms

of individual (Fronsdal) higher spin modes Ψ. We use the Wq
s fields since their gauge

transformation has the simple form (2.28). Nevertheless, W transform with a tracefull

gauge parameter and off shell their double trace is not zero, unlike the double trace of the

irreducible higher spin mode which appears in the Fronsdal description [5]. Moreover, the

equations of motion for Wq
s are not decoupled among each other

FWq
s = �Wq

s − ∂∂ · Wq
s + ∂2(Wq

s )′ = ∂2Wq+1
s (3.1)

where F is the Fronsdal operator. After complete gauge fixing the triplet describes irre-

ducible HS fields with spins s, s−2 . . . 1/0. These physical modes correspond to the on-shell

modes of Wq
s [3, 29]. Notice that setting in (3.1) Wq

s = 0, q ≥ 1 we recover the Fronsdal

equations of motion for an irreducible HS field of spin-s and all lowest spin fields effectively

dissapear. Our goal is to extract irreducible Fronsdal fields from the triplet Lagrangian,

which are double traceless (off shell) and transform with a traceless gauge parameter.

Let us demonstrate with a few low spin examples our decomposition method and then

we will give the general formula. It is more convenient to work with the Lagrangian after

we have eliminated the auxiliary field Cs−1

L = − 1

2
(∂µϕ)2 +

s

2
(∂ · ϕ)2 + s(s − 1) ∂ · ∂ · ϕD

+ s(s − 1) (∂µD)2 +
s(s − 1)(s − 2)

2
(∂ · D)2 . (3.2)

Let us note, that the non dynamical field C naturally appears as a result of a general

expansion of the functional |Φ〉 in terms of the ghost variables. Moreover its presence

is required by the form of the gauge transformations (2.7) since the BRST charge (2.3)

when acting on the parameter of gauge transformations |Λ〉 gives rise to a term −c0b
+
�|λ〉

proportional to the combination c0b
+. In principle one can consider the system with

the constrained parameter of gauge transformations �λ = 0. Otherwise one can notice

that the gauge transformation rule for the field C coincides with the one for ∂ · ϕ − ∂D.

Therefore one can express the field C in terms of the fields ϕ and D before constructing

– 8 –
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the BRST invariant Lagrangian and thus consider a “doublet” formulation for the free

reducible higher spin modes. However in a case of interacting triplets, depending on a

particular vertex under consideration it is not so easy in general to guess a correct form

of the expression of fields Ci in terms of the fields ϕi and Di. Although in the particular

example of a cubic interaction considered in the present paper one can still do so (the gauge

transformation rule for φ, C and D fields which describe the higher spin triplet does not

change, whereas the scalars do not bring about C fields [1]) we keep the field C from the

beginning in order to keep a systematic BRST approach for interacting triplets.

The Lagrangian above can be written in a fully symmetrized form

L = − 1

2(s + 1)
(∂ϕ)2 + s (∂ · ϕ)2 − s (∂ · ϕ) (∂D)

+ s (∂D)2 − s(s − 1)(s − 2)

2
(∂ · D)2 (3.3)

where we have used the following identity for any symmetric field of spin s

(∂µϕ)2 =
1

s + 1
(∂ϕ)2 − s(∂ · ϕ)2. (3.4)

We will also use the following identities and conventions described in [29]

(∂ p ϕ) ′ = � ∂ p−2 ϕ + 2 ∂ p−1 ∂ · ϕ + ∂ p ϕ ′ ,

∂ p ∂ q =

(

p + q

p

)

∂ p+q ,

∂ · (∂ p ϕ) = � ∂ p−1 ϕ + ∂ p ∂ · ϕ , (3.5)

∂ · η k = ∂ η k−1 ,
(

ηk T(s)

)′

= [ d + 2(s + k − 1) ] ηk−1 T(s) + ηk T ′
(s) ,

The symmetrization notation is the one of [29]. Finally, for completeness we give the

Fronsdal Lagrangian [5] for an irreducible higher spin field Ψ

L = −1

2
(∂µΨ)2 +

s(s − 1)

4
(∂µΨ′)

2
+

s

2
(∂ · Ψ)2 (3.6)

+
s(s − 1)

2
Ψ′(∂ · ∂ · Ψ) +

s(s − 1)(s − 2)

8
(∂ · Ψ′)(∂ · Ψ)

Spin-2. We make the ansatz

W0
2 = ϕµν = Ψµν − AηµνΨ

W1
2 = ϕ

′ − 2D = Ψ (3.7)

By direct substitution in (3.2) we can easily see that the Ψµν ,Ψ fields decouple for A =

− 1
d−2 and the Lagrangian becomes

L = −1

2
(∂µΨρσ)2 + (∂νΨν

µ)2 + Ψ
′

∂µ∂νΨ
µν +

1

2
(∂µΨ

′

)2 − 1

2(d − 2)
(∂µΨ)2. (3.8)
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The Lagrangian above describes a massless spin-2 particle and a scalar. We note that the

normalization of the kinetic term of the scalar is not canonical and this will have to be taken

into account when computing the current exchanges since the residue of the propagator

will not be the standard one. Now we can solve (3.7) for Ψµν and Ψ in terms of the fields

W0
2;µν and W1

2 the solutions is

Ψµν = W0
2;µν − 1

d − 2
ηµνW1

2

Ψ = W1
2 . (3.9)

Spin-4. The above spin-2 result suggests that we expand the Ψn fields in terms of Wq
s .

This is a crucial observation based on the fact that: i) Wq
s transform like irreducible modes

but with traceful parameters of gauge transformations ii) the fields Ψn, since they are

irreducible, should be double traceless Ψ
′′

n = 0, n > 3, and should transform with traceless

gauge parameter. We make the ansatz

Ψ4 = W0
4 + AηW1

4 + Bη2W2
4

Ψ2 = W1
4 + CηW2

4 (3.10)

Ψ0 = W2
4

where Ψn denotes irreducible higher spin modes with spin n. From (3.10) and (2.28) one

can see that, the gauge transformation rule for the field Ψ4 is δΨ4 = ∂Λ̃3 with Λ̃3 given by

Λ̃3 = Λ3 + AηΛ′
3. (3.11)

If we demand that Λ̃3 is a traceless tensor of the third rank, as required by [5] we get

A = − 1
d+2 . However the requirement of the “proper” gauge transformation does not fix

all coefficients in (3.10). In order to fix the remaining coefficients one uses the condition

Ψ′′
4 = 0 and

(Wq)′ =
1

q + 1
ϕ[q+1] +

q

q + 1
Wq+1. (3.12)

to obtain

A = − 1

d + 2
B =

1

d(d + 2)
. (3.13)

So the double tracelessness condition allows us to fix most of the coefficients in (3.10)

and moreover guarantees that Ψ4 transforms as an irreducible field of spin 4 in agreement

with [5]. We note that we could have tried to put a W0′ term in the expansion of Ψ2 but

this would give gauge transformation terms of the form ∂ · Λ3 which are not appropriate

for an irreducible mode. The remaining coefficients in (3.10) cannot be fixed by the double

tracelessness condition. We assume that the decomposition of Ψ2,Ψ0 in terms of W1
4 and

W2
4 is the same as the decomposition of the spin-2 triplet in (3.9), that is we set C = − 1

d+2 .

This assumption will be verified later on when we will demonstrate that this choice leads to

a complete decoupling of the Ψn fields in the free Lagrangian. Of course we can solve the

equations above for W or for ϕ,D in terms of for Ψ4,Ψ2 and Ψ. The resulting expressions
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are (the subscript in Ψn denotes the rank of the symmetric tensor field):

W0
4 = Ψ4 +

1

d + 2
ηΨ2 +

1

d(d − 2)
η2Ψ0

W1
4 = Ψ2 +

1

d − 2
ηΨ0 (3.14)

W2
4 = Ψ0

and

ϕ4 = Ψ4 +
1

d + 2
ηΨ2 +

1

d(d − 2)
η2Ψ0

D =
1

2

[

Ψ′
4 +

2

d + 2
Ψ2 +

1

d + 2
ηΨ′

2 +
2

d(d − 2)
ηΨ0

]

. (3.15)

At this point we have managed to construct fields Ψn which satisfy the Fronsdal off-

shell condition Ψ
′′

n = 0 but this is not enough. We should check that the decomposition

in (3.10), or equivalently (3.15), decompose the Lagrangian (3.3) into a series of Fronsdal

Lagrangians for the irreducible fields Ψn. We demonstrate this explicitly for the s=4 case

in appendix A, where we show that all cross-terms between Ψn, n = 0, 2, 4 vanish.

Spin-s. The above arguments draw a clear strategy for finding the decomposition for the

general spin-s.4 We assume an expansion of the form

Ψs =

[ s
2
]

∑

q=0

ρq(d − 2, s)ηqWq
s . (3.16)

Imposing the double tracelessness condition it turns out that we get more equations than

parameters since the traces of W are not written in terms of W only (see 3.12).

So the system seems over-constrained since we have to demand that both the coeffi-

cients of ϕ[q] terms and Wq vanish after taking the double trace. Nevertheless, surprisingly,

we find a solution

ρq(d − 2, s) = − ρq−1(d − 2, s)

(d + 2(s − q − 2))
=

(−1)q(d + 2(s − q − 3))!!

(d + 2(s − 3))!!
(3.17)

which appeared in [13]. In the same manner we can show that in general

Ψs−2k =

[ s
2
]−k
∑

q=0

ρq(d − 2, s − 2k)ηqWq+k
s (3.18)

4It should be clear that the basis we have chosen for the decomposition in (3.16) is not the largest

possible we could have constructed. In principle the independent “basis-vectors” we could have written are

ϕ, D and all their traces, a total of s + 1 terms. We have used instead only the [ s
2
] + 1 linear combinations

of them given by Wq
s . This is motivated by our observation that the gauge transformations of Wq

s have

the proper form for giving irreducible fields gauge transformation with traceless gauge parameters. It is

plausible that our basis might not be unique.
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are doubly traceless fields. Taking the gauge transformation of this equation we can show,

using ρk(d− 2, s) = ρk(d, s− 1), that δΨs−2k = ∂Λ̃s−2k with the traceless gauge parameter

Λ̃s−1−2k =

[ s
2
]

∑

q=0

ρq(d, s − 2k − 1)ηqΛ
[q+k]
s−1 (3.19)

If one tries to invert these equations one gets a system of [ s
2 ] linear equations with a lower

diagonal matrix. We write an expansion of the form

Wq
s =

[ s
2
]−q
∑

k=0

ρ̃k(d, s − 2q)ηkΨs−2q−2k. (3.20)

Generalizing equations (3.9) and (3.14) for the cases s = 2, 4, 6 we make an ansatz

ρ̃k(d, s) =
(d + 2(s − 2k − 2))!!

(d + 2(s − k − 2))!!
. (3.21)

To verify our ansatz we insert (3.20) in (3.16) and vice versa. Then i.e. inserting the

expansion of Wq
s into the expansion of Ψs we should get a Kroenecker delta on the r.h.s.

of (3.16) as it is required by consistency with the l.h.s. . The same for the other way

around. We finally get the condition

δ0,u =

u
∑

n=0

(

u

n

)

ρ̃n(d, h)ρu−n(d−2, h−2n) =

u
∑

n=0

(

u

n

)

ρ̃u−nn(d, h−2n)ρn(d−2, h). (3.22)

A direct computation with Mathematica gives a non-vanishing result only for u = 0, which

implies the validity of the ansatz (3.21) as a solution of (3.20) for arbitrary spin s. We

have also checked it by hand up to spin 6. Further on we need the expansion of ϕ,D in

terms of Ψ in order to verify that the irreducible modes decouple among each other and to

determine the normalization of the kinetic term for each HS irreducible mode. These are

given by

ϕ = W0 =

[ s
2
]

∑

k=0

ρ̃k(d, s)ηkΨs−2k

D =
1

2
((W0)′ −W1) =

1

2

[ s
2
]−1
∑

k=0

ρ̃k(d, s)ηkΨ
′

s−2k +

[ s
2
]

∑

k=1

ρ̃k(d, s)ηk−1Ψs−2k. (3.23)

Now we can insert these expressions in the action (3.3) and verify that all cross-terms vanish

and therefore the fields decouple. We have done this only up to spin 4 (see appendix A)

but we are confident that it works for all spins. In any case taking as a fact the decoupling,

the next thing to do is to compute the normalization of the Fronsdal Lagrangian for each

irreducible higher spin field as it appears in the original Lagrangian (3.2) after we insert

the decomposition (3.23). For this computation it is more convenient to use (3.3). The key

point is that we should look for the normalization of the (∂µΨn)2 term for each irreducible
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field. The standard normalization in Fronsdal Lagrangian (3.6) is −1
2 . In this manner

we get from (B.6) the normalization for the propagator (the inverse of the prefactor of

(∂µΨs−2k)
2 terms multiplied by 2)

Q(s, k, d) =
2kk!(s − 2k)!

s!ρ̃k(d, s)
. (3.24)

3.2 The current-current interaction

In this subsection we will rewrite the interaction Lagrangian (2.27) in terms of the irre-

ducible HS fields Ψn. We will be interested in an interaction term which contains a single

Wq
s . The resulting Lagrangian term after we insert (3.20) is

L(s, h) = Wq
s · Js−2q =

[ s
2
]−q
∑

k=0

ρ̃k(d, s − 2q)(ηkΨs−2q−2k) · Js−2q (3.25)

where h = s − 2q. Using the identity (B.2) and

ηk · Js−2q = (2k − 1)!!J
[k]
s−2q (3.26)

we get

L(s, h) =

[ s
2
]−q
∑

k=0

ρ̃k(d, s − 2q)
h!

2kk!(h − 2k)!
Ψh−2k · J [k]

h . (3.27)

The Lagrangian can be written as

L(s, h) =
h
∑

k=0

J̃h−2k · Ψh−2k (3.28)

with

J̃h−2k = ρ̃k(d, h)
h!

2kk!(h − 2k)!
J

[k]
h . (3.29)

The currents J̃h−2k are conserved since Jh are conserved for on-shell scalar fields in (2.29).

As explained in [13] we can compute the current-current interaction between those currents

using a projector of the form5 Ph−2k, although the currents are not doubly traceless as

one would naively expect. It can be shown that despite this apparent paradox, the correct

number of physical modes is exchanged when we compute the current-current interaction

for conserved currents just as in our case. Actually we can see that, if we try to construct

double traceless currents from the currents of (2.29) exactly as in (3.16), we get a current

which is not traceless conserved (traceless conserved current means that its double trace and

the traceless part of the divergence vanish separately) as it is required by gauge invariance

of the total, free plus interaction, Lagrangian.6

5 The operator P is polynomial of powers of ηµν and Πµν = ηµν−pµp̄ν−pν p̄µ where p2 = p̄2 = 0, p·p̄ = 1,

which guarantees that only physical degrees of freedom are exchanged between external currents. When

acting on conserved currents the expression of P simplifies and becomes completely independent of p̄µ,

see (3.32).
6Indeed gauge variation of the free plus interacting Lagrangian leads to the condition

δL =

Z

Λ ∂ · J = 0 (3.30)
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The expression for the current exchange of two conserved currents coupled to the

irreducible higher spin fields Ψh−2k is given by

J̃h−2k · Ph−2k · J̃h−2k =

[ h
2
]−k
∑

n=0

ρn(d − 2, h − 2k)
(h − 2k)!

2nn!(h − 2k − 2n)!
J̃

[n]
h−2k · J̃ [n]

h−2k (3.32)

including the propagator normalization (3.24) and using the expressions of J̃h−2k from (3.29)

we can write the current exchange for the Ws
q field (after a shift k + n = u)

A(s, h) = (h!)2
h
∑

k=0

(s − h + 2k)!!

s!

ρ̃k(d, h)2

22k(k!)2ρ̃
k+[ s−h

2
](d, s)

· (3.33)

[ h
2
]

∑

u=k

ρu−k(d − 2, h − 2k)

2u−k(u − k)!(h − 2u)!
J

[u]
h · J [u]

h .

A change in the order of the summations leads to the expression

A(s, h) =
h!2

s!

[ h
2
]

∑

u=0

J
[u]
h · J [u]

h

2u(h − 2u)!

u
∑

k=0

(s − h + 2k)!!

2k(k!)2(u − k)!

ρ̃k(d, h)2

ρ̃
k+[ s−h

2
](d, s)

ρu−k(d− 2, h − 2k). (3.34)

This is our final expression for the current exchanges written in terms of irreducible fields.

This expression has some remarkable properties. In particular, taking h = s and us-

ing (3.22) we get the extremely simple expression

A(s, s) = Js · Js. (3.35)

We see that all traces of the currents have cancelled. We shall see in the next section that

this is exactly the result which is obtained after using the propagator of the W0
s = ϕs field.

What is even more remarkable is the fact that in the above result the only non-vanishing

contributions are those where u ≤ max([s−h
2 ], [h2 ]). We have checked this property numer-

ically with the use of Mathematica for several values up to s = 100. This is perfectly

consistent with the value one can expect for the form of the propagator for the p-th trace

of ϕs (see (4.12)), which gives further support to our results.

4 Current exchanges for triplets

In this section we will repeat the computation performed in the previous section using

a different method. We will gauge fix the Lagrangian in (2.24) in a specific gauge in

which the fields ϕ,D decouple from each other and we shall write down the propagator for

those fields in this gauge. Computing the current-current interaction we will confirm that

which requires, for a double traceless current J of spin s, that

∂ · J =
1

d + 2(s − 3)
η(∂ · J ′) (3.31)

since the gauge parameter is traceless for the gauge variation of an irreducible field.
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our result (3.34) has the correct form and the remarkable constrain on the current traces

mentioned after (3.35) appears naturally in perturbation theory formulated in terms of

reducible fields. We will also demonstrate the equivalence of the two methods with several

non-trivial examples.

4.1 Gauge fixing and the propagator

The most straightforward gauge is the one where the auxiliary field Cs−1 in (2.24) is set

equal to zero. The gauge fixing (Rξ-gauge) term in the Lagrangian has the form

Lξ = − 1

2ξ
C2. (4.1)

The gauge fixing procedure requires the introduction of a Faddeev-Popov determinant in

the path integral

Z =

∫

dωe
−ω2

2ξ

∫

[dϕ][dC][dD]∆FP δ(C − ω)eL+Lξ (4.2)

where using the gauge transformation of C from (2.26) one gets

∆FP = det

(

δC

δΛ

)

= det(�). (4.3)

The FP determinant is field independent and can be absorbed into the normalization

constant of the path integral. Obviously, the presence of interactions in the Lagrangian

will make the FP determinant field dependent, requiring therefore that we introduce ghosts

just as in QCD. In our case though the interaction (2.27) is abelian since it gauges the

abelian rigid symmetries of the free scalar Lagrangian (see i.e., [1] and [19]) and ghost fields

will not be needed. On the contrary, when we consider the full interacting Lagrangian as

i.e. (2.16)–(2.22), we will need FP ghost fields for a consistent quantum theory. This,

however, will not affect tree level amplitudes in full analogy with QCD, since external

states are always on-shell, but it will play an important role in loop amplitudes and in

the optical theorem. We leave this and other interesting issues for a future work, where it

would be very interesting to consider a consistent interacting theory beyond the tree level.

The value of the parameter ξ interpolates from Dedonder-Feynman gauge for ξ = 0

to Dedonder-Landau for ξ = 1.7 The most useful gauge for our purposes is the Feynman

gauge which basically decouples the field C completely from the path integral and the

gauge fixed Lagrangian takes the form

L + Lξ=0 = − 1

2
(∂µϕ)2 +

s(s − 1)

2
(∂µD)2. (4.4)

7 Notice that in the literature for QED the Rξ gauge fixing Lagrangian is given by Lξ = − 1

2ξ
(∂µAµ)

and the Feynman gauge corresponds to ξ = 1. This corresponds to adding (4.1) to (2.24) for the spin-1

triplet, integrating out C first, which gives C = ∂µAµ, and then gauge fixing with a δ(∂ · A − ω) condition

in the path integral. This procedure gives us for ξ = 1 the Feynman gauge and for ξ = 0 the Landau one.

This is exactly the opposite identification from the main text where gauge fixing C as in (4.2), rather than

integrating it out, we get Landau gauge for ξ = 1 and Feynman gauge for ξ = 0.
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It is instructive to use the equations of motion for C from (2.25) to deduce the form of the

gauge fixing in terms of irreducible fields. Inserting (3.23) in the second equation of (2.25)

we get

C = ∂ · ϕ − ∂D =

[ s
2
]−1
∑

k=0

ρ̃k(d, s)ηk

(

∂ · Ψs−2k −
1

2
∂Ψ′

s−2k

)

(4.5)

where in the r.h.s. we recognize immediately the Dedonder gauge fixing term in the paren-

theses. The Feynman gauge fixing corresponds to setting C = 0 in the Lagrangian.

We notice from (4.4) that the two fields ϕ,D have decoupled completely from each

other, allowing us to simply invert their kinetic operators in order to get their propagators

∆(ϕ;µ,ϕ; ν) =
ηµ1(ν1

ηµ2ν2
. . . ηµsνs)

p2s!
(4.6)

∆(D;µ,D; ν) = − 1

s(s − 1)

ηµ1(ν1
ηµ2ν2

. . . ηµs−2νs−2)

p2(s − 2)!

∆(ϕ;µ,D) = 0

where the parentheses in subscripts signify symmetrization with respect to one set of the

indices i.e., ν1, . . . νs. Notice the negative sign in the propagator of D. The field D is a

“ghost” field. For other gauges like the Landau one, the fields ϕ,D do not decouple after

integrating out the auxiliary field C and it is quite non-trivial to diagonalize the kinetic

operator to get the propagator of these states.

Let us see how this procedure works explicitly for the spin 2 case. The propagators

for the irreducible fields Ψ2,Ψ0 from (3.8) in the Feynman gauge are

∆(Ψ2;µ,Ψ2; ν) =
ηµ1ν1

ηµ2ν2
+ ηµ1ν2

ηµ2ν1
− 2

d−2ηµ1µ2
ην1ν2

2p2

∆(Ψ0,Ψ0) =
d − 2

p2
(4.7)

where we have taken into account the normalization factors of the kinetic term of Ψ0. Now

using equations (3.9) we can deduce the propagators for the fields ϕ = Ψ2 + 1
d+2ηΨ0 and

D = 1
2Ψ′

2 + 1
d−2Ψ0

∆(ϕ;µ,ϕ; ν) =
ηµ1ν1

ηµ2ν2
+ ηµ1ν2

ηµ2ν1

2p2
(4.8)

∆(D,D) = − 1

2p2
(4.9)

∆(ϕ;µ,D) = 0

where we easily see that the fields ϕ,D are decoupled from each other and the propagators

agree with (4.6). The fact that this decoupling is special to the Feynman gauge can be

seen if we repeat the procedure described above in Landau gauge where the propagators
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take the form

∆(Ψ2;µ,Ψ2; ν) =
ηµ1ν1

ηµ2ν2
+ ηµ1ν2

ηµ2ν1

2p2
(4.10)

−
2ηµ1µ2

ην1ν2

d−2 +
ηµ1ν1

pµ2
pν2

+ 3 permutations

p2

2p2

∆(Ψ0,Ψ0) =
d − 2

p2
. (4.11)

From the form of the propagators above we can easily compute the propagator ∆(ϕ;µ,D)

and indeed we find that it is non-zero and therefore the fields do not decouple.

4.2 Current exchange and comparison

In this section we will compute the current-current interaction for the Lagrangian (3.25)

using the propagators in (4.6). For this we will need to compute the propagators for

arbitrary traces of the fields ∆(ϕ[p], ϕ[p]). There are obviously propagators of the form

∆(ϕ[p], ϕ[q]) for p 6= q but they will not be needed for the current exchange computations

we consider in this note. From the form of the propagators in (4.6) and the use of (3.5) we

can deduce the general form of these propagators

∆
(

ϕ[p]
s ; 1, ϕ[p]

s ; 2
)

=

p
∑

k=max(2p−[ s
2
])

Bk(s, p)ηp−k
1 ηp−k

2 ∆
(

ϕ
[p]
s−4p+2k; 1, ϕ

[p]
s−4p+2k; 2

)

(4.12)

where p ∈ [0, [ s
2 ]]. The notation needs some explanation. The two sets of indices for the

two fields of the propagators are denoted in a shorthand notation in which, 1 stands for

the µ1, µ2, . . . µs−2p subscripts of the first field and 2 for the ν1, ν2, . . . νs−2p subscripts of

the second field. The propagators in the summation on the r.h.s. are the usual propagators

of (4.6) for the field with spin s − 4p − 2k. The coefficients Bk(s, p) are unknowns to be

determined by the explicit calculation. This has not been achieved for the moment in the

general case. The lower bound in the k-summation is obvious since the minimum spin of

the propagators in the r.h.s. is zero.

Now, an important observation is that each ηp−k
1 ηp−k

2 term will give us a current-

current interaction proportional to Jp−k
s · Jp−k

s . The lower bound of the summation means

that the maximum trace of the currents allowed in a ϕ
[p]
s exchange can be written as

max
([s

2

]

− p, p
)

= max

(

s − h

2
,

[

h

2

])

(4.13)

We immediately recognize the bound we deduced numerically from (3.34). The equa-

tion (4.13) explains the surprising constrain which we pointed out in the last paragraph of

the section 3. This fact strongly indicates that the procedures described in section 3 and 4

are completely equivalent. This was not obvious at all in the expression of (3.34) but it is

a direct consequence of our ∆(ϕ
[p]
s ; 1, ϕ

[p]
s ; 2) propagators in the theory formulated in terms

of ϕ and D.
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Since we have not achieved to the moment to compute the explicit expressions of the

Bk(s, p) coefficients we will proceed with a few examples which establish the equivalence

of the two methods we have used. Let us define

C(s − h, u, h) ≡
u
∑

k=0

(s − h + 2k)!!

2kk!2(u − k)!

ρ̃k(d, h)2

ρ̃
k+[ s−h

2
](d, s)

ρu−k(d − 2, h − 2k) (4.14)

which appears in (3.34). Numerical computation of the coefficients C(s−h, u, h) gives zero

for u > s−h
2 .

Spins 2 and 4. We can easily compute the relevant coefficients C(s − h, u, h) we will

need for the spin 2 and 4 cases

C(2, 0, h) = 2(d + 2(h − 1)) C(2, 1, h) = 2

C(4, 0, h) = 8(d + 2h − 2)(d + 2h) C(4, 1, h) = 16(d + 2h − 2)

C(4, 2, h) = 4. (4.15)

From the explicit expression of the propagators in (4.6), the interaction La-

grangian (2.27) and the definition of Wq
s in (2.28) we get for the corresponding cur-

rent exchanges

A(2, 2) = p2J2∆(W 0
2 ,W 0

2 )J2 = J2 · J2 (4.16)

A(2, 0) = p2J0∆(W 1
2 ,W 1

2 )J0 = (d − 2)J0 · J0

where A(s, h) is the current exchange for the Ws
q field as in (3.34). The current exchange

is defined as the residue of the corresponding Feynman diagram for the current-current

interaction. We can compare (4.16) now with the expression from (3.34) using (4.15). We

verify that A(2, 0) = C(2,0,0)
2 J0 · J0 while A(2, 2) is given by (3.35) as expected.

The spin 4 case requires that we compute the propagators of traces of fields. The

relevant propagators, after a short computation, are given by

∆(ϕ′;µ,ϕ′; ν) = 2
(d + 4)ηµ1(ν1

ηµ2ν2) + 2ηµ1µ2
ην1ν2

4!p2

∆(ϕ
′′

, ϕ
′′

) = 8
d(d + 2)

4!p2

∆(D;µ,D; ν) = − 1

12

ηµ1(ν1
ηµ2ν2)

2!p2
(4.17)

∆(D′,D′) = − d

12p2
.

For h = 2 we get

A(4, 2) = p2J2∆(W1
4 ,W1

4 )J2 =
2(d + 2)J2 · J2 + 2J

[1]
2 · J [1]

2

12
(4.18)

which is reproduced by the expression in (3.34)

A(4, 2) =
(2!)2

4!

1
∑

u=0

C(2, u, 2)

(2 − 2u)!2u
J

[u]
2 · J [u]

2 . (4.19)
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In a similar manner we obtain that A(4, 0) = 8d(d−2)
12 J0 · J0. So we have shown that both

methods agree for spin 2 and spin 4.

Spin s and h=s-2 case. For this case we need to compute the propagator

∆(ϕ′; 1, ϕ′; 2). Keeping a more compact notation we find

∆(ϕ′, ϕ′) =
2

p2

(

d + 2(s − 2)

s(s − 1)
∆s−2(1, 2) + 2

η1η2∆s−4(1, 2)

s(s − 1)(s − 2)s − 3)

)

. (4.20)

The subscripts of ∆ on the r.h.s. are the spin of the propagator from (4.6) and we have

suppressed the field variables and their space-time indices. The second term on the r.h.s.

implies symmetrization of each ηi, i = 1, 2 with the corresponding indices of the ∆s−4(1, 2)

propagator. When the propagator is contracted with symmetric currents Js−2 for both sets

of indices then there are (s−2)(s−3)
2 terms from the symmetrization of each ηi which result

into (s−2)(s−3)
2 traces of the currents J

[1]
s−2 for each set of indices. The final result we get is

A(s, s − 2) = p2Js−2∆(W1
s ,W1

s )Js−2 (4.21)

= 2
d + 2(s − 3)

s(s − 1)
Js−2 · Js−2 +

(s − 2)(s − 3)

s(s − 1)
J

[1]
s−2 · J

[1]
s−2.

The same computation should be reproduced by (3.34)

A(s, s − 2) =
(s − 2)!2

s!

[ s
2
]−1
∑

u=0

C(2, u, s − 2)

(s − 2 − 2u)!2u
J

[u]
s−2 · J

[u]
s−2. (4.22)

Taking into account the constraint (4.13) we see that only u = 0, 1 survive and a trivial

computation using (4.14) gives agreement of the two results.

Further examples become more and more tedious. Nevertheless, we believe that we

have demonstrated in a sufficient manner the equivalence of the two methods. Actually

our result in (3.34) can be used to extract the Bk(s, p) coefficients rather than trying to

compute them directly by taking traces of (4.6).

5 Conclusions

In this paper we developed a technique of constructing propagators for massless irreducible

higher spin modes from the Lagrangians describing the reducible higher spin fields. The

main motivation for this is that often the gauge-invariant Lagrangians describing the re-

ducible higher spin modes have a much simpler form than those describing irreducible

higher spin modes, especially when one considers interacting theories. This technique can

be straightforwardly generalized to the case of massive higher spin fields. As an appli-

cation we considered the current-current exchange amplitudes obtained from the cubic

Lagrangians describing an interaction of higher spin fields with scalars.

It would be interesting to generalise these results for the case of AdS space and for the

triplets containing fermionic fields. Another interesting application of our results may be

a computation of the higher order scattering amplitudes for systems which contain exact

vertexes in all orders in the coupling constant. A possible example of such kind of systems

is given in the present paper for massive and in [14] for massless bosonic higher spin fields.
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M.T − 1
10(∂ϕ)2 +4(∂ · ϕ)2 −4(∂ · ϕ)D +4(∂D)2 −12(∂ · D)2 Total

(∂Ψ′

4
)(∂Ψ2)

d+2 −2 0 −2 4 0 0
(∂·Ψ4)(∂Ψ2)

d+2 −4 8 −4 0 0 0
(∂·Ψ′

4
)(∂·Ψ2)

d+2 0 24 −12 0 −12 0
(∂·Ψ′

4
)(∂Ψ′

2
)

d+2 0 0 −6 12 −6 0
(∂·Ψ′

4
)(∂Ψ0)

d(d−2) −12 24 −24 24 −12 0
(∂·Ψ2)(∂Ψ0)
d(d+2)(d−2) −12(d + 4) 24(d + 4) −12(d + 6) +48 −24 0
(∂Ψ′

2
)(∂Ψ0)

d(d+2)(d−2) −6(d + 4) 24 −6(d + 6) 12(d + 4) −12 0

Table 1. The numbers in each column indicate the coefficient of the cross terms of Ψn (first

column) from each term of the Lagrangian (A.1) (first row). “M.T” stands for Mixing Terms.”
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A Decoupling of the Lagrangian for spin 2 and spin 4 triplet

The Lagrangian for spin s=4 in (3.3) is given by

L = − 1

10
(∂(kϕµνρσ))

2 + 4((∂ · ϕνρσ))2 − 4(∂ · ϕνρσ) Dνρσ

+4(∂(kDµν))
2 − 12((∂ · Dµ))2 (A.1)

We insert the decomposition (3.15) and using (3.5) we get from each of the five terms of

the Lagrangian (A.1) the cross-terms listed in table 1.

As we can see all mixing terms have vanishing coefficients and we confirm that the

Lagrangian decomposes to gauge invariant Lagrangians for Ψ4,Ψ2,Ψ0. Since the fields Ψn

are by definition doubly traceless and transform with traceless parameters (3.19), we can

deduce easily that the Lagrangians for the irreducible fields are Fronsdal Lagrangians. We

are only missing the correct normalization coefficient for each one of them. This will be

computed in appendix B for the general spin-s case. A few examples of our calculations

from the first term in the Lagrangian are

(∂Ψ4)(η∂Ψ2) = 10[∂Ψ′
4 + 2(∂ · Ψ4)](∂Ψ2)

(η∂Ψ2)
2 = 10[(d + 6)(∂Ψ2)

2 + 12(∂ · Ψ2)
2 + 3(∂Ψ′

2)
2 + 12(∂ · Ψ2)(∂Ψ′

2)]

(∂Ψ4)(η
2∂Ψ0) = 60(∂ · Ψ′

4)(∂Ψ0) (A.2)

(η∂Ψ2)(η
2∂Ψ0) = 30(d + 4)(2(∂ · Ψ2) + ∂Ψ′

2)(∂Ψ0)
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Let us explain a bit how we get the result of the first equation in (A.2). The expression on

the l.h.s. has total 10 terms. These come from the symmetrization of η with ∂Ψ2. Then

depending which terms η contracts from ∂Ψ4 we get ηµν∂µΨνρσλ
4 or ηµν∂ρΨµνσλ

4 . In this

way we obtain the two terms on the r.h.s. with the given multiplicities.

B Lagrangian normalization for irreducible fields

In this appendix we will prove equation (3.24) of the main text.

Using (3.5) and various manipulations we have the following identities

(ηk∂Ψs−2k)
2 =

(s + 1)!

ρ̃k(d, s + 2)2kk!(s − 2k + 1)!
(∂Ψs−2k)

2 + . . .

(∂ · (ηkΨs−2k))
2 =

(s − 1)!

ρ̃k−1(d, s)2k−1(k − 1)!(s − 2k + 1)!
(∂Ψs−2k)

2 + . . . (B.1)

(ηk−2∂Ψs−2k)
2 =

(s − 3)!

ρ̃k−2(d, s − 2)2k−2(k − 2)!(s − 2k + 1)!
(∂Ψs−2k)

2 + . . .

where the dots are all terms involving traces and divergences of the fields Ψs−2k and we

have used the following combinatorial identity for symmetrized tensors contracted with

symmetrized tensors

ηkTq → ηk × Tq
(2k + q)!

(2k)!q!
. (B.2)

Notice that (B.2) is not an equality. What it means is that if the tensor of the l.h.s. is

contracted with a tensor totally symmetric over all the indices then we can substitute it

with the expression on the r.h.s. . The symbol × means the product of the two tensors

without symmetrization of their indices. We also remind the reader that as in [29] the

notation ηk has a total of (2k − 1)!! terms unlike the symmetrization of a 2k-rank tensor

which has (2k)! terms.

Using the identities above we can insert (3.23) in (3.3) dropping the cross-terms and

keeping only the (∂Ψs−2k)
2 terms which are relevant to our case. We get

s!

2k+1k!(s − 2k + 1)!

ρ̃2
k(d, s)

ρ̃k−1(d, s)
· (B.3)

(

d − 2(s − k) +
4(k − 1)k

d + 2(s − k − 1)
− 4k

)

(∂Ψs−2k)
2 + . . .

where we have used the identities

ρ̃k(d, s + 2) =
ρ̃k−1(d, s)

d + 2(s − k)
(B.4)

ρ̃k−1(d, s) =
ρ̃k−2(d, s − 2)

d + 2(s − k − 1)
.

Now we can use the following identity (which was used also to convert (3.2) to (3.3))

(∂µΨq)
2 =

1

q + 1
(∂Ψ)2 − q(∂ · Ψq)

2 (B.5)
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to arrive finally at

Lϕ,D → −1

2
ρ̃k(d, s)2

s!

2kk!(s − 2k)!
(∂µΨs−2k)

2 (B.6)

after we have used the identity

ρ̃k(d, s) = ρ̃k−1(d, s)
(d + 2(s − 2k))(d + 2(s − 2k − 1)

d + 2(s − k − 1))
. (B.7)

(B.6) should be contrasted to the coefficient of the first term in (3.6).
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